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The contraction of the description of Brownian motion from phase space to 
position space is discussed by means of non-Markovian Langevin equations 
in position space. A Fokker-Planck equation valid for any time is derived for 
the harmonic oscillator, and the overdamped, critical, and infradamped 
cases are discussed. For anharmonic potentials systematic corrections to the 
Smoluchowski equation are derived. Such corrections can be interpreted in 
this context as an expansion in powers of the correlation time of the" colored" 
stochastic noise appearing in the Langevin equation. The breakdown of the 
Fokker-Planck approximation is also discussed. 
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1. INTRODUCTION 

An old question posed by Uhlenbeck and Orstein ~1~ is to find the exact 
equation satisfied by the probability distribution in position space of a 
Brownian particle that can be in general under the influence of some potential. 
An approximate answer to this question is given by the Smoluchowski 
equation ~2~ valid for long times and high frictions. Generally speaking, the 
role of these two limits is not yet completely clear. The exact answer for free 
Brownian motion has recently been discussed by Mazo ~3~ and an extensive 
history of the problem is contained in a paper by WilemskiJ 4) Besides its 
intrinsic interest in specific cases/5~ this problem provides a real physical and 
not too complicated example which allows important subjects to be discussed, 
such as adiabatic elimination of variables ~6~ and non-Markovian stochastic 
differential equations. Thus, its analysis seems worthwhile. Indeed, the 
elimination of momentum variables is the simplest example of adiabatic 
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elimination and we shall show that it leads to Langevin equations with 
colored noise, (7~ for which Fokker-Planck equations will be derived. This is 
also related to the "irrelevant" non-Markovian terms appearing in the 
renormalization group approach to critical dynamics. (8~ 

The Fokker-Planck equation in the complete phase space is the common 
starting point of the formalisms which have been proposed (4'9-13~ to obtain 
systematic corrections to the Smoluchowski equation. Brinkman (9~ derived 
an equation involving a second-order derivative with respect to time that has 
been criticized by Hemmer, (~4~ who showed that, in the case of free Brownian 
motion, it does not give for small times a better result than the Smoluchowski 
equation (see also Ref. 12). Wilemski (4~ obtained a first correction to the 
Smoluchowski equation in an expansion in powers of the inverse of the 
friction coefficient of the momentum. The corrected equation is a Fokker-  
Planck equation in position space in which a transient regime is neglected. 
Such an equation had been obtained earlier by Stratonovich (1~ without 
explicit reference to the problem of Brownian motion. 2 This corrected 
Smoluchowski equation has been recently reobtained by Titulaer, ( ~  Skinner 
and Wolynes, (12~ and Chaturvedi and Shibata. (la~ 

In Refs. 11 and 13it  is stressed that the contraction of the description 
performed implies some kind of projection in position space. Titulaer's ( ~  
work is based on the Chapman-Enskog method, while Chaturvedi and 
Shibata's (~a~ work relies on a natural projector formalism. (15~ These develop- 
ments allow one to evaluate corrections to the Smoluchowski equation to any 
desired order in the inverse of the friction coefficient. Nevertheless," we feel 
that the mathematical procedures used in Refs. 9-13 obscure the actual 
physical process in position space and they make it difficult in general to deal 
with simple problems such as the harmonic oscillator. ~ 

The approach we present here is not based on the Fokker-Planck 
equation in phase space, but on the Langevin equation in position space 
obtained by projecting in this space the original phase-space Langevin 
equations. In this way we start f rom the very beginning with a problem only 
in position space. The most naive way of doing this is by eliminating adia- 
batically the momentum by setting its time derivative equal to zero. (6~ This 
just leads to the Smoluchowski equation. If  we perform this elimination 
exactly (it only remains an initial condition for the momentum), the resulting 
Langevin equation in position space defines a non-Markovian process. The 
non-Markovicity is caused by the reduction of the number of variables and 
it is reflected in the appearance of memory kernels and colored stochastic 
noise. As long as the Langevin equation remains linear, it is possible to 
associate to it a Fokker-Planck equation valid for any time. Following this 

2 This result [Eq. (4.245) of Stratonovich's monograph] seems to have been overlooked in 
the recent literature (4'11-1a~ on this topic. 
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method, we solve the problem of a harmonic potential in Section 2, deriving 
an equation for the exact one-time probability density in position space which 
is valid for any value of the friction constant. Approximate Fokker-Planck 
equations for nonlinear problems which reproduce earlier results are obtained 
in Section 3. The picture of a non-Markovian process in position space 
followed in this approach gives a deeper physical insight into the meaning of 
such equations. On the other hand, the breakdown of the existence of a 
Fokker-Planck equation in some order of approximation is very clearly 
related to the colored behavior of the stochastic force. The basis of the deriva- 
tion of such Fokker-Planck equations is reviewed in Appendix A. 

Finally, it should be stressed that the existence of Fokker-Planck equa- 
tions is not in disagreement with the non-Markovian character of the 
stochastic process. The Fokker-Planck equation we shall use is not, although 
it has the same form, a bona fide Fokker-Planck equation for a nonstationary 
Markov process (16~ in the sense that its fundamental solution is not the 
conditional probability for any time. The solution of such a Fokker-Planck 
equation for a non-Markovian process is only valid to evaluate one-time 
averages and it is no help in multitime averages. ~7~ 

Our main conclusions are summarized in Section 4. 

2. H A R M O N I C  P O T E N T I A L  

In this section we derive a Fokker-Planck equation, valid for any time 
and any value of the friction constant, for the probability density in position 
space of a Brownian particle in a harmonic potential. It had been earlier 
claimed (1I~ that it is impossible to derive such an equation valid for the 
transitional regime in which initial conditions have not yet decayed. The 
derivation presented here shows the inexactness of this statement, at least 
for this special case. By means of that exact equation the overdamped, critical, 
and infradamped cases will be considered separately and some differences 
between the long-time limit and high-friction limit will be discussed. The 
implications of assuming Maxwellian initial conditions for the momentum 
will also be discussed. Some final remarks will be made for free Brownian 
motion considered as a limiting case. 

2.1. Fokker -P lanck  Equat ion 

The stochastic equations of motion for the position q and momentum p 
of a brownian harmonic oscillator are 

1 ) ( t )  = - a p ( t )  - c o Z q ( t )  + ~ ( t )  (2.1) 

~(t) = p(t) (2.2) 
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where we have taken a unity mass and ~(t) is the stochastic driving force, 
assumed to be Gaussian and white noise, with zero mean and correlation 
function 

( ~ ( t ) ~ ( t ' ) )  = 2 D  8(t - t ' )  (2,3) 

where, according to the fluctuation-dissipation relation, 

D = 1 k B T  (2.4) 

The contraction of the description from phase space to position space is 
carried out by formally solving (2.1) and substituting into (2.2) 

( t ( t )  = -~o2 e -a~- t '~q ( t  ') d t '  + e - m - v ~ ( t  ') d t '  + Po e - a t  

(2.5) 

where Po is the initial value of the momentum p(0) = Po. This equation can 
be rewritten as 

f0 ' ( t( t )  = - fi(t - t ' ) q ( t ' )  d t '  + F ( t )  + ~(t)  (2.6) 

where the following notation has been introduced: 

/?(t - t ') = ~2e-a"-t'~, t > t '  (2.7) 

f2 ~(t)  = e - a " - t ' ~ ( t ' )  d t '  (2.8) 

F ( t )  = poe  -at  = (po/w2) f l ( t )  (2,9) 

Due to the projection made in position space, the Markovian character 
of Eqs. (2.1) and (2.2) is absent in Eq. (2.6). This is reflected in the appearance 
of the memory kernel fl(t - t ' )  and also in the stochastic force ~(t), which is 
no longer white, but colored. The new force ~(t) is still Gaussian with zero 
mean, and its correlation function is now 

a(t,  t ' )  = ( ~ ( t ) ~ ( t ' ) )  = k B T ( e  - m - v ~  - e -m+v~)  

= k B T [ w - 2 f i ( t  - t ' )  - eo-~/3(t)]3(t')], t > t '  

(2.10) 

It is also important to note that no fluctuation-dissipation relation between 
~(t, t ') and fi(t - t ' )  exists in Eq. (2.6). Such a relation is only recovered in the 
long-time limit t --> m, t '  --> oo. 

As a first step toward obtaining a Fokker-Planck equation for the 
probability density in position space, we transform Eq. (2.6) into another 



A Colored-Noise Approach to Brownian Motion in Position Space 609 

Langevin equation with no memory kernel in it. This transformation (18-~~ 
follows the procedure used for Langevin equations of the type of Eq. (2.6) but 
for which a fluctuation-dissipation relation was assumed. (18'z9) Laplace- 
transforming Eq. (2.6), one has 

so that 

where 

O(z) = 2(z)[q(O) + F ( z )  + g(z)] 

q(t) = x(t)q(O) + x(t - s)F(s) ds + x(t - s)~(s) ds 

(2.11) 

(2.12) 

9(z) = [z + /~(z)] -1 (2.13) 

with/~(z) the Laplace transform of p(t) and x(t) the Laplace antitransform of 
2(z). The initial condition q(0) can be eliminated by taking the time derivative 
of Eq. (2.12), and one is then led to the desired Langevin equation: 

d f /x ( t  - s) d_ (~ x(t_- s) F(,) ds + x(t) ~(s) as 
gt(t) = - f l ( t )q( t )  + x(t) dt Jo x(t) & .o  -X'~) 

(2.14) 

where 

fl(t) = -2( t ) /x ( t )  (2.15) 

This is a linear Langevin equation of the type studied in Appendix A 
and according to Eq. (A15) its corresponding Fokker-Planck equation is 

where 

~q 0 d (t x(t - s) F(s) ds P(q, t) 8P(q,st t) = fi(t)qP(q, t) - ~q x(t) i t  Jo -x-(i-) 

Gq2 
+ ~ D(t)P(q, t) (2.16) uq- 

D(t) -= dr 7(t, z) exp - /3(r') dr' = (t dr (2.17) 
y(t, r) x(t) 

% xO-) 
and 

d r(t, r) = ~x(t)  ~ s x(t - s) ~(s) ds x(~) ~ fo dS' x(~ - s') ,> ~(s') x(i) -x~Y , ,  
(2.18) 
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Let us now give a more explicit expression for the diffusion D(t). From 
Eqs. (2.17), (2.18), and (2.10) we have 

O(t) • d 2 2 ~ X -  (t)[Al(t) + A2(t)] (2.19) 

Al(t)  = ds ds' x(t - s)x(t - s') -'-s ~(s - s') (2.20) 

A2(t) = - f ] d s  ~] ds' 2(t - s)x(t - s ' ) ~ ( s ) ~ ( s ' )  (2.21) 

A~(t) can be evaluated by taking its time derivative 

Al(t)  = -(2kBT/co2)x(t)2(t) (2.22) 

where use has been made of the definition (2.13) of x(t). By recalling that 
x(0) = 1, we obtain 

Al(t)  = (kBT/oo2)[1 - x2(t)l (2.23) 

Again by the definition (2.13) of x(t) we have 

Az( t ) = - (kBT/oJ4)[2( t ) ] 2 (2.24) 

Substituting (2.23) and (2.24) in (2.19) and replacing (2.15), we obtain 

~ f i ( t )  k~r  2-,  d D(t) - ~ X (t) ~ [/3(t) 2] (2.25) 

A more explicit expression can also be given for the second term on the 
right-hand side of Eq. (2.16). Substituting the value (2.9) of F(s) and using 
once again the definition (2.13) of x(t) and Eq. (2.15), we find that this term 
reduces to 

x(t) 7 fi(t) (2.26) 

Substituting (2.25) and (2.26) in (2.16), we find that the Fokker-Planck 
equation becomes 

OP(q,t) ~ p o x ( t ) [ d ~ ( t ) ] O P ( q , t  ) k B T - t  02 P 
c3t - fl(t)qP(q, t) - w----g- ~----~ + ~ 8( ) ~ (q, t) 

kBT 2 d -  2 c~2 
~ X  ( t ) [~f i ( t )  J -~--qzP(q, t) (2.27) 

This is the desired equation, valid for any time and any value of the param- 
eters, given in terms of x(t), which has different values depending on the 
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relative strength of the friction A and of the potential, the latter being meas- 
ured by the frequency ~o. In the following the three possible cases are analyzed. 
In any case, Eq. (2.27) is a linear Fokker-Planck equation and although it has 
time-dependent coefficients, the exact solution can always be given in terms 
of these coefficients. 

2.2. Overdamped Case 

We study now the particular form of (2.27) under the assumption that 

A/2 > ~ (2.28) 

This is the case usually considered in the literature <11~ because it is the one for 
which the high-friction limit becomes more natural. For the range of values 
(2.28), x( t )  becomes 

x( t )  = e-a~12[ch at + (A/2a)sh at]; a 2 = (A/2) 2 - oJ 2 (2.29) 

and so 

/~(t) = oJ 2 sh at/[a ch at + (A/2) sh at] (2.30) 

d~(t) /dt  = [o~/x(t)]2e -At = o~2/[ch at + (A/2a) sh at] 2 (2.31) 

Equations (2.27) and (2.29)-(2.31) give the exact and explicit form of the 
Fokker-Planck equation. Earlier approximate results can be obtained by 
taking the appropriate limits. If  it is assumed that 

e ~e >> e -~  (2.32) 

Eqs. (2.29)-(2.31) become 

x(t) = [1 + (A/2a)]e - ~ 1 2 - ~  (2.33) 

/3(t) = A/2 - a (2.34) 

dfi(t) /dt  = {o,/[1 + (A/2a)]}2e -2~ (2.35) 

and the Fokker-Planck equation (2.27) reads 

~P(q'ot t) _ - a -~q q (q, t)  1 + A/2a Oq P(q'  t) 

kBT 0 2 
+ - - ~ - 5 - ( ~ -  a ) (1 -e -~ ) -~ -qqzP(q , t )  (2.36) 

It is worth emphasizing that Eq. (2.36), which still contains the Po initial value, 
is only restricted by (2.32), which is satisfied both for long times and high 
frictions, but which is much less restrictive than the usual assumption r 

At >> 1 (2.37) 
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Equation (2.36) contains two terms involving exponentials. One of them 
depends on the initial condition P0 and the other does not. These exponentials 
can be neglected by assuming (2.37). Then, 

1 at - - a -~q qP(q,  t)  + ~ - a - -  P(q ,  t)  (2.38) aq 2 

which is the result of Titnlaer. (~1~ 
Assumption (2.37) can be satisfied either by considering a fixed, finite 

value of Z and a long-time t (long-time limit) or by considering a fixed, finite 
time and a large value of Z (high-friction limit). In the latter case, Eq. (2.38) 
is somehow misleading, since it contains all orders in A- 1. Therefore Eq. (2.38) 
should be considered as valid for long times in which the transient regime 
has already elapsed. In the high-friction limit an expansion of Eq. (2.36) in 
terms of A- ~ has to be made. The same results are of course obtained if Eq. 
(2.38) is expanded. In first order one obtains the Smoluchowski equation (2~ 

a P ( q , t )  ~o 2 a p k B T  a 2 p ,  
- - a t  = --A -~q q ( q' t)  + -X a--~ ( q' t)  

and in second order 

= --2 1 + -V ~ qP(q' t) + ~ 1 + -fi aq----- ~ P(q, t) 

which is the correction first given by Stratonovich/1~ 

(2.39) 

(2.40) 

2.3, Critical Case 

This is the case in which 

oJ = A/2 (2.41) 

and thus assumption (2.32) can no longer be made. For this value of ~, x ( t )  
becomes 

x ( t )  = e-aim(1 + At/2) 

and so 

/](t) = (�89 + �89 

(d/dt)~(t) = (�89 + ~ a t )  2 

Therefore, the Fokker-Planck equation (2.27) becomes 

aP(q, t )  (�89 a p ,  Poe-i t /2  ae(q ,  t )  
at 1 T ~ t  s tq, t) - 1 + �89 aq 

kBTt  (I -at a2 
+ 1 + �89 - e ) ~ P(q ,  t)  

(2.42) 

(2.43) 

(2.44) 

(2.45) 
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In the long-time limit (2.45) can be written as 

aP(q, t) 2  ̀ a 2k sT  32 p .  
at 2 aqqP(q' t) + -X ~q2 (q, t) (2.46) 

This equation coincides with (2.38) with a = 0. This is in agreement with the 
physical fact that for any values of 2̀  and w the stationary state of the oscilla- 
tor, which is obtained from the long-time limit, must coincide. On the other 
hand, the leading term in the high-friction limit of (2.45) gives 

~P(q, t) 2  ̀ a 
- ~2 ~qqP(q' t) (2.47) 

at 

which also can be obtained from (2.46) but not as a particular case of the 
Smoluchowski equation (2.39). We see that in this limit diffusion becomes 
negligible. The impossibility of deriving (2.47) as a particular case of the 
overdamped oscillator is due to the critical values attained by the parameters 
~o and X. In fact, earlier systematic expansions become divergent at this 
point. (m 

2.4. 

Then 

I n f radamped  Case 

This is defined by 

2`/2 < (2.48) 

(2.49) 
(2.50) 

(2.51) 

x(t) = e-at/2[cos at + (2`/2a) sin at] 

/3(t) = co z sin at/[a cos at + (2,/2) sin at] 

(d/dt)#(t) = co2/[cos at + (2`/2a) sin at] 2 

Equation (2.27) supplemented by (2.49)-(2.51) gives the Fokker-Planck 
equation for the infradamped oscillator. It is not possible to write down a 
Fokker-Planck equation in the long-time limit since no such limit exists for 
#(t). Even more, there exists a set of times for which #(t) diverges. For these 
points the Fokker-Planck operator is not defined. This fact is related to the 
nonexistence for all times of the inverse of the conditional probability for 
general non-Markov processes. (17) Nevertheless, this formal Fokker-Planck 
equation has a time-dependent solution whose long time does exist and it 
coincides, as it should, with the stationary solution of (2.39). 

2.5. M a x w e l l i a n  Init ial  M o m e n t u m  Dis t r ibut ion  

In the above developments, the initial value of the momentum has been 
considered as a fixed parameter in the evolution equation for q(t) [Eq. (2.6)]. 
Thus, any correlation function or statistical average calculated with the solu- 
tion of the Fokker-Planck equation (2.27) will depend on P0. If this is not 
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fixed but has some initial probability distribution, the correct result is ob- 
tained by taking the average over such a distribution. 

If the initial momentum P0 is considered from the beginning as a stochas- 
tic parameter, it may be interesting to find the master equation associated to 
(2.14) under these circumstances. The derivation of the Fokker-Planck 
equation (2.16) given in Appendix A has then to be modified by including a 
further average of Eq. (A3) over the probability distribution of p0. This can 
be in general quite involved. Nevertheless, if we assume the Maxwellian 
Gaussian probability distribution with zero mean value for Po, this new 
average can also be performed by means of Novikov's theorem (21) [see Eq. 
(A7)]. In practice, this is equivalent to considering in Eq. (2.6) or (2.14) the 
term 

~'(t) = F(t) + ((t) (2.52) 

as a new stochastic force whose correlation function over the mutually 
independent functional distribution of ~(t) and the Maxwellian distribution 
of p0 is 

a'(t, t ') = (~'(t)~'(t')}po = ((po2}po - kBT)e -~(t+''~ + kBT e -~(t-t'~ 
(2.53) 

For the Maxwellian distribution 

(po~},o = kBT (2.54) 

so that 
~'(t, t') = ksTe -~(t-t') (2.55) 

Therefore, the Fokker-Planck equation (2.16) reduces to 

= ~q ~2 OP(q,~t t) fi(t)qP(q, t) + ~ D'(t)P(q, t) (2.56) 

where D'(t) is defined in terms of ~/(t, t ') in the same way that D(t) was defined 
in terms of ~,(t, t ') in Eq. (2.17). The quantity ~,'(t, t ') is defined as :~(t, t') in 
Eq. (2.18) by replacing ~(t) by ~'(t) and taking the average also over the 
Maxwellian distribution of p0. Comparing (2.10) with (2.55), it becomes clear 
that D'(t) is given by the same expression (2.19) for D(t) but with A2(t) = O. 
Thus, the Fokker-Planck equation for P(q, t) under the assumption of 
Maxwellian initial conditions for the momentum is 

~q k B T - . .  ~2 eP(q'et t) = ~(t)qe(q, t) + --dr ~(t) ~ P(q, t) (2.57) 

The assumption of Maxwellian initial conditions as compared to an 
arbitrary initial distribution for the momentum means physically the neglect 
of a transient regime in which the momentum distribution reaches thermal 
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equilibrium. This is already seen in the fact that under this assumption 
a(t, t ')  [Eq. (2.10)] is replaced by e'(t, t') [Eq. (2.55)] so that Eq. (2.6) satisfies 
a fluctuation-dissipation relation that, as mentioned earlier, implies a long- 
time limit. On the other hand, terms that are negligible, after a transient 
regime, such as the exponential terms in Eq. (2.36), no longer appear under 
this special initial condition. 

2.6. Free Brown ian  M o t i o n  

The Brownian motion problem in a vanishing potential can be very easily 
treated along the same lines as followed in Section 2.1. The Fokker-Planck 
equation in position spaces is of course the limit of (2.27) and (2.29)-(2.31) 
when ~2 ~ 0. This equation can also be obtained by other methods (a,22~ and 
is 

~P(q, t) ~q ~2 ~ 
~t - = - poe-atP(q, t) + --~q2 (1 - 2e -at + e-2a~)P(q, t) 

(2.58) 

It had already been remarked by Wilemski <4~ that in this case the corrections 
to the Smoluchowski equation had to be of a high order in a -1. From (2.58) 
we see that such corrections are of order e -at and that they only exist for the 
transient regime. 

If  Maxwellian initial conditions for P0 are assumed, going through the 
same steps as in Section 2.5, we obtain that (2.58) reduces to 

aP(q, t) ~= k~T 
St = eq 2 _ _ ( 1  - e-Zt)P(q, t) (2.59) 

This equation clearly shows that part of the transient regime cannot be 
eliminated by appropriate momentum initial conditions. 

3. A N H A R M O N I C  P O T E N T I A L S  

The equations of motion for a Brownian particle in an anharmonic 
potential 4(q) read 

O(t) = p(t) (3.1) 

p(t) = -; tp( t)  - ~'(q(t)) + ~(t) (3.2) 

where q~' denotes the derivative of b with respect to q and ~(t) is the stochastic 
force defined in Section 2.1. In the same way as in the last section, formally 
solving (3.2) and substituting in (3.1) gives 

O(t) = e-Atp(O) - e-X~t-t'~qS'(q(t')) dt' + ~(t) (3.3) 
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Due to the nonlinearity contained in q~', this equation cannot be reduced to a 
memory-less form. Thus, we shall look for an approximate master equation 
for the probability density in q space in powers of ,~- 1. The point we want to 
emphasize in this paper is how this can be done starting from the non- 
Markovian Langevin equation (3.3) and handling consistently the colored 
noise ~(t). In this way, the reason why no Fokker-Planck equation exists 
beyond terms of order ,~-a (Refs. 11-13) will clearly appear as related to the 
colored behavior of ~(t). 

The term containing the initial condition p(0) can be neglected in this 
approximation. The second term on the right-hand side of (3.3) can be 
approximated by successive integrations by parts and neglect of transient 
terms. This is equivalent to the formal expansion 

d 8 ( t -  t') + . . .  t > t '  (3.4) e - ~ ( t - t ' )  = 2,~ - 1  3 ( t  - t ' )  + 2 ) , - 2 ) - ~  

Substituting in (3.3), we obtain 

dl(t) = - h- ld/(q(t)) + /~- 2~"(q(t))O(t ) + -~(t) (3.5) 

so that 

O(t) = -) ,-l~'(q(t))[1 + h-2~"(q(t))] + [1 + h-2(J'(q(t))]~(t) + O(h -5) 
(3.6) 

The stochastic force ~(t) has not yet been approximated. If Eq. (3.4) is 
introduced in its definition (2.8), ill-behaved functions as ~(t) appear. Thus 
a consistent approximation to order ,~-a has to be made in its correlation 
function e(t, t') [Eq. (2.10)], which appears in the master equation associated 
to (3.6). Such an equation is derived in Appendix A, Eq. (A8), and it becomes 
in this case 

~P(q, t) 8 
- ,~-14,'(q)[1 + )<2qT'(q)]P(q, t) 

Ot 8q 

+ ~ - - - q [ l + h - 2 6 " ( q ) ] ~ f ~ d t ' ~ ( t , t ' ) ( ' ( q ( t ) - q ) 3 ~ ( t , ) / /  

(3.7) 
where 

P(q, t) = (a(q(t) - q)) (3.8) 

The correlation function a(t, t') can now be expanded analogously to the 
expansion in Eq. (3.4). The second term -kBT exp[-h( t  + t')] of ~r(t, t') will 
not contribute, when so expanded, to the integral in Eq. (3.7), and so 

[ d, 3 ( t _  t,) +. . .J ,  t >  t '  ~r(t, t') = 2kBT ~-1 3(t - t') + ,~-2 ~-~ 

(3.9) 
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This expansion of a(t, t') is related to the so-called "quasicomplete random 
processes."(23~ With such an expansion, 

jo [ dr' cr(t, t') 3((t ')  - kBT A -~ 3((t ')  \dr 6~(t )1 t'=t 

(3.10) 

The quantity ~q(t)/3~(t') is the response of q(t) to the force ~(t'). This 
response function is analyzed in Appendix B by means of an operator formal- 
ism. This formalism gives an analytic expression for it from which its time 
derivatives are easily evaluated. According to Eqs. (B12) and (B15), one has 

3q(t) 
3~(t) 1 + A-2qV'(q(t)) (3.11) 

~r )1,,=, 
= [ 1  + ~,-2(;'(q(t))]{:t-lg~'(q(t))[1 + A-2&"(q(t))]} ' 
- a-z&'(q(t))[1 + a-2&"(q(t))][1 + ,~-2&"(q(t))]' (3.12) 

The second term in Eq. (3.12) does not contribute to Eq. (3.7) in order A -3. 
Substituting (3.10)-(3.12) in (3.7) and keeping terms up to order A -8, we 
obtain the following Fokker-Planck equation: 

eP(q, t) O 
et = e--q A-lqT(q)[1 + A-2~"(q)]P(q' t) 

+ N [1 + ~,-2#,(q)] Z-lkBTP(q, t) 

= ~ {a-l~'(q)[1 + a-2~"(q)] - Z-3k~T~"(q))P(q, t) 

~2 
+ A- ~k~T ~q~ [1 + a-~" (q ) ]P(q ,  t) (3.13) 

If we drop terms of order A-3, Eq. (3.13) becomes the Smoluchowski 
equation. (2~ This corresponds to the limit of white noise for ~ obtained by 
keeping only the first term in expansions (3.9) and (3.4). Terms of order A-3 
give the first correction to the Smoluchowski equation coinciding with the 
result of Refs. 4 and 10-13. It is worth noting that (3.13) is only completely 
meaningful when solved for the steady state, since transients have been 
neglected in its derivation. For natural boundary conditions and from the 
phase-space Fokker-Planck equation the exact steady-state solution is known 
to be 

P~t(q) = N e -  | (3.14) 
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This is also a stationary solution of both the Smoluchowski equation and of 
(3.13). The main interest with regard to (3.13) is thus in looking for non- 
equilibrium steady states in which nonnatural boundary conditions have to 
be imposed. 

Equation (3.13) represents a Fokker-Planck approximation to the 
non-Markovian and nonlinear process defined in (3.3), which is valid for a 
small correlation time ,~- ~ of ~(t). Higher order corrections are systematically 
obtained by considering higher order terms in (3.4) and (3.9), Nevertheless, 
in the next order to the one considered up to now, that is, O(Z- ~), the Fokker -  
Planck approximation already breaks down. In this next order one adds to 
Eq. (3.10) a term 

This quantity is evaluated in Appendix B [Eq. (B17)] and it contains a term of 
order ;~-a in which ~(t) appears as a multiplicative factor. When this is 
substituted in (3.7) a factor ( f ( t )  a ( q ( t )  - q)> comes in. The average in this 
factor is discussed in Appendix A by means of Novikov 's  theorem (2x~ and it 
introduces a new derivative with respect to q. Thus, ,no Fokker-Ptanck 
equation will exist in this approximation since third-order derivatives are 
present. Nevertheless, it is easily checked that in the special case of a harmonic 
potential, the second term of (B17) involving ~(t) vanishes, and thus a Fokker -  
Planck approximation still exists. Moreover, this is true in any order of  
approximation. Thus, one has a power series in A -~ that, when summed, 
becomes a Fokker-Planck equation valid in any order in t -~.  In summing 
such a series, Eq. (2.38) is reobtained. One of the advantages of the approach 
presented here is that this equation can be directly obtained as done in the 
previous section without going through a series expansion. This could not be 
done in earlier approaches. (ax~ 

4. C O N C L U S I O N S  

We have presented in this paper a new approach to the problem of the 
corrections to the Smoluchowski equation based on a non-Markovian 
Langevin equation in position space. As stated in the introduction, this 
approach is of direct relevance to other related fields. The problem of a 
harmonic oscillator has been exactly solved in this framework. We have not 
noticed that this result has been previously published and we have obtained 
it in our approach by considering as starting equations ones which are 
already in position space, a This exact solution has allowed for a separate 

3 After the completion of this work we became aware of an alternative derivation of the 
results in Section 2.2 by Risken e t  al .  C2~ These authors rely on an analogy with quantum 
mechanics and also reobtain (3.13). 
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discussion of the overdamped, critical, and infradamped oscillators. Earlier 
approaches were unable to deal systematically with the last two cases. The 
specific roles of the long-time limit and of the high-friction limit have also 
been discussed in the context of this exact result, as well as the implications 
of special initial conditions. 

For the nonlinear case earlier approximate results are reobtained. Our 
picture of a non-Markovian process in q space gives a more direct physical 
meaning to the different steps of these calculations. In particular, the expan- 
sion in powers of ~-1 can be reinterpreted as an expansion in terms of the 
correlation time of the colored stochastic force driving the process. The 
breakdown of the Fokker-Planck approximation for other than linear 
problems is also clearly displayed. On the other hand, Eq. (3.13) is a non- 
linear Fokker-Planck equation derived from a nonlinear, non-Markovian 
Langevin equation, valid for small correlation times. This equation can be 
useful in other contexts to test the soundness of white noise approximations. 

A P P E N D I X  A. F O K K E R - P L A N C K  E Q U A T I O N S  FOR C O L O R E D -  
NOISE L A N G E V I N  E Q U A T I O N S  

We consider a general nonlinear Langevin equation 

O(t) = V(q(t);  t) + g(q(t);  t)~(t) (A1) 

where we assume that the stochastic force ~(t) is Gaussian with zero mean 
and arbitrary correlation function 

(~(t)~(t')) = 7(t, t') (A2) 

For each realization of the noise ~(t) one can consider (25,26~ an ensemble 
of systems obeying Eq. (A1). The probability of finding the system at the point 
q at time t is given by the probability density p(q, t) which obeys the continuity 
or "stochastic Liouville equat ion" 

Op(q, t) 0 
~t - c~q [V(q; t) + g(q; t)~(t)]p(q, t) (A3) 

where v and g are taken at a fixed point of q space. 
The solution q(t) of Eq. (A1) for each realization of ~(t) is a functional 

of ~(t) and of the initial condition qO 

q(t) = q([~(t)], qO, t) (A4) 

and therefore p(q, t) can be expressed as the average of ~(q(t) - q) over the 
distribution of initial conditions qO. It can be shown, (26~ and it is physically 
clear, that the probability density P(q, t) for the stochastic process q(t) 
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defined by (A1) is given by the average of p(q, t) over the realizations of 
~(t): Therefore 

P(q, t) = (8(q(t)  - q)} (A5) 

where the brackets ( . . . )  mean average over both the distribution of initial 
conditions and over the probability distribution of the stochastic forces. 
Taking the latter in Eq. (A3), we obtain 

aP(q, t) a a = -a--71 V(q, t)P(q, t) - -~qg(q, t)(~(t) 8(q(t) - q)) (A6) a-----7~ 

Since 8(q(t) - q) is a functional of ~(t), Novikov's theorem (21~ states that 

(~(t) 8 ( q ( t ) - q ) } =  f ~ d t ' y ( t , t ' ) ( - 8 [ 3 ( ~ , ~ q ) ] ~  

- a t '  r ( * ,  - q )  <(t')/ ~ ; 2  t ' )~8(q(t)  8q(t)"~ (17) 

Substituting in (A6), we obtain 

aP(q, t) a 
a-'---7--- = -aq  V(q, t)P(q, t) 

+-~qg(q,t)--~q dt 'y(t , t ')  8 ( q ( t ) - q )  3q(t)'~ (18) 

In general, this equation can be written in Fokker-Planck form only after 
some approximations such as the ones carried out in Section 3. Nevertheless, 
there are two cases in which (A8) reduces exactly to a Fokker-Planck equa- 
tion. The first case is the white noise limit: 

y(t, t ') = 2y(t) 8(t - t') (A9) 

It is proved in Appendix B that 

8q(t)/8g(t) = g(q(t), t) (A10) 

and therefore Eq. (A8) becomes the usual bona fide Fokker-Planck equation 
for a nonstationary Markov process: 

a O 
aPfq,at t) aqa V(q, t)P(q, t) + r(t) -~q g(q, t) ~q g(q, t)P(q, t) 

ag(q, t)]~. - aqa V(q, t) + y(t)g(q, t) ~ ] r ~ , q ,  t) 

0 2 
+ y(t) 77-fi~2g2(q, t)P(q, t) (Al l )  t~q 
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In the last step we have obtained the spurious drift 7(t)g(q,  t) Og(q, t)/~q 
that appears when transforming a Stratonovich stochastic differential equation 
to its equivalent It6 equation/27~ 

The second case in which (A8) can be exactly reduced to a Fokker -  
Planck equation is the case of a linear Langevin equation (A1): 

V(q, t) = a(t)q + b(t), g(q, t) = 1 (A12) 

In these circumstances 

q(t)= (exp[ffa(~)d'~j)(q(O)+ fo~d~(exp[-s ~('d] 
(A13) 

and so 

3q(t)/8~(t') = exp , a(~-) dr , t > t '  (A14) 

Therefore (AS) becomes 

~P(q, t) 0 02 
gt = eq [a(t)q + b(t)]P(q, t) + Oq---5 D(t)P(q, t) (A15) 

Ef ] D(t) = dt' 7(t, t') exp , a0-) d~" (A16) 

I t  is worth mentioning that this result also can be applied to the whole class (2a~ 
of Fokker-Planck equations that can be transformed to linear form. 

In a related context Adelman (18~ and Fox ~16'19~ have also obtained 
Fokker-Planck equations for linear Langevin equations with colored noise 
under the restriction of the existence of a fluctuation-dissipation relation. 
Adelman obtains the equation from the knowledge of the solution and Fox 
uses methods which we believe rather complicated, at least for the case of  
Gaussian noise in which we are interested. A much more general treatment 
of  the nonlinear problem, including non-Gaussian forces, is also given in Ref. 
20. Some useful formulas for evaluating the quantity (~(t) ~(q(t) - q)) are 
given in Ref. 29 for a special form of 7(t, t'). 

A P P E N D I X  B 

In this appendix we evaluate the quantity 8q(t)/3~(t') appearing in (A8) 
and its time derivatives used in Section 3. The force ~(t) is formally considered 
in the following as a given function of time and no average over its probability 
distribution is performed. 
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Given Eq. (A1), ~q(t) /3~(t ' )  may be interpreted as the nonaveraged, non- 
linear response function to the external force ~(t). The MSR formalism <3~ 
is the formalism best suited to deal with such a response function for classical 
phenomenological equations. According to it, the following operator equa- 
tions of motion <3z'32) are equivalent to (A1) if an average over initial condition 
is made at the end of the calculations: 

~(t) = [L(q(t), q(t), t), q(t)] (~1) 

~(t) = [L(q(t), q(t), t), 4(t)] (B2) 

[O(t), q(t)] = 1 (B3) 

4(0) = ~/~q(O) (B4) 

where c~(t) is defined by Eqs. (B2)-(B4), the square bracket stands for a 
commutator, and 

L(q( t ) ,  ~(t) ,  t) = {V(q ( t ) ,  t) + g ( q ( t ) ,  t )~(t)}~(t)  (B5) 

Going to an interaction picture ~1,32~ and denoting by q~ the operators 
whose evolution is governed by L~ d 1, t) = v(q, t)~, one has 

q( t )  = S(O, t )q~  0) (B6) 

~(t)  = S(O, t )O~ 0) (B7) 

S(0, t) = Texp dr' g(q~  t ')~(t ')O~ ') (B8) 

where T denotes time antiordering. 
From Eq. (B6) 

3q( t )  _ [3S(0, t) ] 
~ ( t ' )  S( t ,  0), q ( t ) j  (B9) 

Since 

3S(0,  t ) /$~(t ' )  = O(t - t ' )S(O, t ' )g (q~  t ')Cl~ ', t) (B10) 

one finally has 

3q(t) /$~(t ' )  = O(t - t ' ) [g(q( t ' ) )d t ( t ' ) ,  q(t)] (B11) 

which is the operator expression for the response function. ~32~ In the limit 
t ' --+ t - ,  

3q(t) /$~(t)  = g ( q ( t ) ,  t) (B12) 

The derivative with respect to t ' of $q(t) /8~(t ' )  is easily evaluated once 
its expression (Bll)  and the equations of motion (B1)-(B2) are given. 
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Assuming for simplicity from now on that neither v(q(t)) nor g(q(t)) depends 
explicitly on time, as is the case in Section 3, we have for t > t '  

d 3 q ( t )  [ d  ] 
dt' 8~(t') = ~ g(q(t'))O(t'), q(t) 

= [[L(q(t'), ~(t'), t'), g(q(t'))~(t')], q(t)] 

= - [V'(q(t'))g(q(t'))~(t'), q(t)] + [V(q(t'))g'(q(t'))~(t'), q(t)] 

(m3) 
where we have used the fact that (31) 

[O(t),f(q(t))] = f ' (q(t))  (B14) 

and f ' (q )  denotes the derivative of f with respect to q. In the limit t '  ~ t 

d 3q(t)/t = -g(q( t ) )V' (q( t ) )  + V(q(t))g'(q(t)) (B15) 
dr '  ~ ~( t ' )  �9 : ~  

Higher order derivatives are analogously evaluated. For example, 

d 2 3(q(t)) 
dt '2 3~(t') 

= - [[L(q(t'), 4(t'), t'), V'(q(t'))g(q(t'))4(t')], q(t)] 

+ [[L(q(t'), ft(t'), t'), V(q(t')g'(q(t'))4(t')], q(t)] 

= [V 2 t' ( V  t' g(q(t')) ' ' ( q ( ) )  ( q ( ) ) [ ~ ] } ~ ] ( t ' )  

_ g 2 (q( t' )) f g(q( t' )) [ ~V(q(t')) ] } ~ ( t '  ' ')c](t'), q(t)J (B16) 

In the limit t '  -+ t 

2 g(q(t)) d 2 3 q ( t ) t , _ t = V  ( q ( t ) ) ; V ( q ( t ) ) [ ~ ] '  \ ' \  [ ] f  
dt'2 a~(t') _ 

V(q(t)) ' ' - g 2 ( q ( t ) ) { g ( q ( t ) ) [ ~ l  } ~(t) (B17) 
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